If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 40000 = 8.2x2 + 1341x Reorder the terms: 40000 = 1341x + 8.2x2 Solving 40000 = 1341x + 8.2x2 Solving for variable 'x'. Reorder the terms: 40000 + -1341x + -8.2x2 = 1341x + -1341x + 8.2x2 + -8.2x2 Combine like terms: 1341x + -1341x = 0 40000 + -1341x + -8.2x2 = 0 + 8.2x2 + -8.2x2 40000 + -1341x + -8.2x2 = 8.2x2 + -8.2x2 Combine like terms: 8.2x2 + -8.2x2 = 0.0 40000 + -1341x + -8.2x2 = 0.0 Begin completing the square. Divide all terms by -8.2 the coefficient of the squared term: Divide each side by '-8.2'. -4878.04878 + 163.5365854x + x2 = 0 Move the constant term to the right: Add '4878.04878' to each side of the equation. -4878.04878 + 163.5365854x + 4878.04878 + x2 = 0 + 4878.04878 Reorder the terms: -4878.04878 + 4878.04878 + 163.5365854x + x2 = 0 + 4878.04878 Combine like terms: -4878.04878 + 4878.04878 = 0.00000 0.00000 + 163.5365854x + x2 = 0 + 4878.04878 163.5365854x + x2 = 0 + 4878.04878 Combine like terms: 0 + 4878.04878 = 4878.04878 163.5365854x + x2 = 4878.04878 The x term is 163.5365854x. Take half its coefficient (81.7682927). Square it (6686.053691) and add it to both sides. Add '6686.053691' to each side of the equation. 163.5365854x + 6686.053691 + x2 = 4878.04878 + 6686.053691 Reorder the terms: 6686.053691 + 163.5365854x + x2 = 4878.04878 + 6686.053691 Combine like terms: 4878.04878 + 6686.053691 = 11564.102471 6686.053691 + 163.5365854x + x2 = 11564.102471 Factor a perfect square on the left side: (x + 81.7682927)(x + 81.7682927) = 11564.102471 Calculate the square root of the right side: 107.536516919 Break this problem into two subproblems by setting (x + 81.7682927) equal to 107.536516919 and -107.536516919.Subproblem 1
x + 81.7682927 = 107.536516919 Simplifying x + 81.7682927 = 107.536516919 Reorder the terms: 81.7682927 + x = 107.536516919 Solving 81.7682927 + x = 107.536516919 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-81.7682927' to each side of the equation. 81.7682927 + -81.7682927 + x = 107.536516919 + -81.7682927 Combine like terms: 81.7682927 + -81.7682927 = 0.0000000 0.0000000 + x = 107.536516919 + -81.7682927 x = 107.536516919 + -81.7682927 Combine like terms: 107.536516919 + -81.7682927 = 25.768224219 x = 25.768224219 Simplifying x = 25.768224219Subproblem 2
x + 81.7682927 = -107.536516919 Simplifying x + 81.7682927 = -107.536516919 Reorder the terms: 81.7682927 + x = -107.536516919 Solving 81.7682927 + x = -107.536516919 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-81.7682927' to each side of the equation. 81.7682927 + -81.7682927 + x = -107.536516919 + -81.7682927 Combine like terms: 81.7682927 + -81.7682927 = 0.0000000 0.0000000 + x = -107.536516919 + -81.7682927 x = -107.536516919 + -81.7682927 Combine like terms: -107.536516919 + -81.7682927 = -189.304809619 x = -189.304809619 Simplifying x = -189.304809619Solution
The solution to the problem is based on the solutions from the subproblems. x = {25.768224219, -189.304809619}
| 3(5e-8)= | | (c-10)/5=-10 | | 4(9y-11)+7(10+y)=112 | | forqM=2P+3Q | | 6x=188 | | 291+11x= | | 6(x+2)+14=6(x+4)+12 | | 3x+5(10x-2)=573 | | 291+11= | | 42=3n+0.5n | | 6a+3b-8a+2b= | | x/4-8=7/8 | | (4y+8)+(6y+9)=47 | | 0.5x+4=(x+20)0.4 | | 3(11x-6)+7(10+x)=252 | | 3x+8-6x=12-14x+11x-4 | | 0.5x+4=(x+10)0.4 | | 134*5= | | X-93=90 | | (11z+10)+(4z-3)=82 | | (A+1)(a+2)=o | | 0=-16t^2+vt+5 | | 4x+3x-10=60 | | 15*0.4761904762-15*2.238095238y+5+25y+5=36*0.4761904762-36*2.238095238y+72y | | 4.5(x+27)=1.5x+72 | | 5x+2=11x+9 | | 1.3(2x-4)+5=-2.3(x+1) | | X-93=x-93 | | 10/h=3 | | Log[2](9x+2)=2 | | 15*0.4761904762-2.238095238y+5+25y+5=36*0.4761904762-2.238095238y+72y | | 8lnx=4x-4 |